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Single-molecule imaging of transcription 
dynamics in somatic stem cells

Justin C. Wheat1,2, Yehonatan Sella3, Michael Willcockson1, Arthur I. Skoultchi1,  
Aviv Bergman3,4,5,6, Robert H. Singer1,4,7,8,9 & Ulrich Steidl1,2,10,11 ✉

Molecular noise is a natural phenomenon that is inherent to all biological systems1,2. 
How stochastic processes give rise to the robust outcomes that support tissue 
homeostasis remains unclear. Here we use single-molecule RNA fluorescent in situ 
hybridization (smFISH) on mouse stem cells derived from haematopoietic tissue to 
measure the transcription dynamics of three key genes that encode transcription 
factors: PU.1 (also known as Spi1), Gata1 and Gata2. We find that infrequent, stochastic 
bursts of transcription result in the co-expression of these antagonistic transcription 
factors in the majority of haematopoietic stem and progenitor cells. Moreover, by 
pairing smFISH with time-lapse microscopy and the analysis of pedigrees, we find that 
although individual stem-cell clones produce descendants that are in transcriptionally 
related states—akin to a transcriptional priming phenomenon—the underlying 
transition dynamics between states are best captured by stochastic and reversible 
models. As such, a stochastic process can produce cellular behaviours that may be 
incorrectly inferred to have arisen from deterministic dynamics. We propose a model 
whereby the intrinsic stochasticity of gene expression facilitates, rather than impedes, 
the concomitant maintenance of transcriptional plasticity and stem cell robustness.

Quantitative, single-cell studies of biological systems have shown that 
stochasticity is inherent to all cellular processes1–3. Owing to low copy-
number fluctuations3–5, spatial and temporal partitioning of reactions6, 
and the hard physical bounds that limit efficient feedback control7, gene 
expression is inevitably noisy. As such, it is unsurprising that homo-
geneous transcriptional populations have been challenging—if not 
impossible—to define1. A fundamental question in stem-cell biology 
is how the robust production of mature cell types arises from these 
intrinsically stochastic processes.

Haematopoiesis is a paradigmatic stem-cell differentiation model based 
on the haematopoietic stem cell (HSC) (Fig. 1a). Single-cell RNA sequenc-
ing (scRNA-seq) studies have suggested that the gene expression states 
that underlie terminal branches of the haematopoietic tree arise early 
and continuously during a multi-step differentiation process through 
populations of increasingly restricted progenitor cells8,9. Transcription 
factors are thought to have a central role in this process, coordinating 
the expression of cohorts of target genes during lineage specification. 
Consequently, determining the magnitude of transcriptional noise in 
the expression of genes that encode transcription factors is fundamental.

Single-molecule imaging in primary HSPCs
The quantitative evaluation of transcriptional noise requires single-
cell techniques with molecular sensitivity. We therefore adapted a 

single-molecule FISH (smFISH) technique, the gold standard for 
single-cell RNA analysis, to study transcriptional noise in primary 
haematopoietic stem and progenitor cells (HSPCs)10,11. Owing to the 
short mRNA length and high (G+C) content of some critical haema-
topoietic transcription factors, we selected a two-step hybridization 
strategy to increase the signal-to-noise ratio12,13 (Fig. 1b, Supplementary 
Methods 1). We first tested this technique on PU.1, which encodes a 
transcription factor that has essential activating functions in myeloid 
cell development14,15, is a repressor of erythroid differentiation16,17, and 
the expression of which is deregulated during leukemogenesis18–20. 
Two-step smFISH markedly increased spot intensity, the signal-to-
noise ratio, and the number of detectable PU.1 mRNAs per cell when 
compared with commercial probe sets (Fig. 1c, Extended Data Fig. 1a, b).  
We then extended this approach to multiplexed imaging in three channels,  
enabling the simultaneous detection of three genes in single cells 
(Extended Data Fig. 1c–e, Supplementary Methods 2).

Because smFISH also enables the direct observation of active tran-
scription sites21, we first asked how genes that are predicted to be co-
regulated with PU.1 correlated in both mature mRNA counts and in 
transcriptional activity. We performed multiplexed smFISH for PU.1 and 
eight critical haematopoietic genes (transcription factor genes: Gata1, 
Cebpa, Runx1, Myb, Zfpm1 and Meis1; functional genes: Mpo and Gypa) 
(Supplementary Table 1) within phenotypically mixed Kit+Lin− HSPCs 
(Extended Data Fig. 1f). Nascent transcription of PU.1 was higher in 
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cells in which the expression levels of PU.1 were high (a PU.1high state), 
as expected (Extended Data Fig. 1g, h). Furthermore, cells in the PU.1high 
state showed increased nascent transcription of the myeloid lineage 
genes Cebpa, Mpo and Myb, and reduced nascent transcription of the 
erythroid genes Gata1, Zfpm1 and Gypa (Extended Data Fig. 1i, j), as well 
as Meis1; this was also consistent with expectation. We found minimal 
change in the expression of Runx1. These experiments demonstrate the 
utility of smFISH in studying transcription in primary HSPCs.

Next we compared the sensitivity of smFISH with that of scRNA-
seq, by comparing mRNA detection of the seven aforementioned 
transcription factor genes by smFISH with five scRNA-seq datasets 
of comparable HSPCs9,22–25. For all genes tested, there was a marked 
increase in the number of non-expressing cells in the scRNA-seq data-
sets compared with the smFISH results (Extended Data Fig. 2a). We 
then calculated the Gini coefficient for each gene, which quantifies 
population dispersion of a variable of interest11. Because capturing 
the underlying population dispersion for an mRNA is essential for 
assigning transcriptional states, underestimating this metric implic-
itly limits information about gene regulation. Gini coefficients range 
from a value of 0 (equal distribution of gene-expression values) to a 
value of 1 (a minority of cells with signal greater than 0). For six out of 
seven genes tested, the Gini coefficient was lower when determined 
by smFISH than by scRNA-seq (Extended Data Fig. 2b). The sole excep-
tion was Zfpm1, for which one out of five scRNA-seq studies showed a 
similar calculated Gini index to that obtained from smFISH. We then 
calculated Gini coefficients for a larger set of other transcriptional 
regulatory genes from scRNA-seq data (Supplementary Table 2). 
Consistent with the findings of our initial test set of transcription 
factor genes, the majority of genes in this list had Gini indices greater 
than 0.8 (Extended Data Fig. 2c). Furthermore, we found that these 

sensitivity restrictions substantially affect both unsupervised clus-
tering of transcriptional states and post hoc analyses of the pairwise 
dependencies in the expression of transcription factors (Extended 
Data Fig. 2d–f, Supplementary Fig. 2a, Supplementary Table 3, Sup-
plementary Discussion 1). As such, scRNA-seq may be fundamentally 
incapable of providing quantitative estimates of transcriptional noise 
during haematopoiesis.

Co-expression of PU.1 and Gata genes in HSPCs
We then used smFISH to evaluate the role of stochasticity in a cen-
tral transcriptional network between PU.1 and the Gata transcription 
factor genes Gata1 and Gata2. PU.1 and GATA1 are critical to differen-
tiation along the granulocyte–monocyte and erythrocyte lineages, 
respectively, and the direct interaction between these transcription 
factors through an antagonistic toggle switch was the original model 
for fate decisions along the granulocyte–monocyte or erythrocyte  
lineages16,17. Gata2 is abundant in early HSPCs and may function simi-
larly to Gata1 in these cells by antagonizing the function of PU.1, albeit 
at lower potency26. Additionally, Gata2 primes HSPCs to upregulate 
Gata1 during terminal erythropoiesis, after which Gata1 is thought 
to shut off Gata2 in a phenomenon described as the ‘Gata switch’27,28. 
Nevertheless, recent scRNA-seq studies have either failed to detect 
progenitors that co-express PU.1 and Gata123, or detected co-expression 
in only a small minority of cells8,9,22, which has called into question the 
validity of such a model in directing myeloid–erythroid fate decisions.

We isolated three immunophenotypically defined populations—
granulocyte/monocyte progenitors (GMPs), megakaryocyte/
erythrocyte progenitors (MEPs) and common myeloid progeni-
tors (CMPs)—and assessed the expression of these transcription 
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Fig. 1 | Stochastic bursting of mRNAs drives co-expression of antagonistic 
transcription factors in HSPCs. a, Schematic of haematopoietic hierarchy. 
HSCs, haematopoietic stem cells; grans, granulocytes; mphages, 
macrophages; MPP, multi-potent progenitors. b, Description of smFISH using a 
two-step hybridization (hyb.) method. The bottom graph shows line plots of 
the signal above the background. c, Quantification of PU.1 molecules per bone 
marrow (BM) mononuclear cell using 1-step or 2-step smFISH. d, Filtered 
images of CMP, GMP and MEP cells stained by smFISH for PU.1 (Cy5, red 
pseudocolour), Gata1 (Alexa Fluor 594, cyan pseudocolour), and Gata2 (Cy3, 
yellow pseudocolour). Scale bars, 10 μm. DNA is shown in grey pseudocolour.  
e, Violin plots (area-normalized) of the natural log normalized (mRNA per cell + 1)  

distribution for each gene. The numbers overlaid are the mean copy number 
per cell (CMP, n = 3,174; GMP, n = 364; MEP, n = 1,113). f, Burst frequency of each 
gene in each HSPC subpopulation. TS, transcription site. g, Frequency of cells 
co-expressing PU.1, Gata1 and Gata2. h, Comparison of observed co-bursting 
frequencies versus theoretical frequencies derived from statistical 
independence. The colour indicates which combination of bursting patterns is 
being tested—for example, (1,2) in the top panel means the frequency of cells 
with 1 active PU.1 site and 2 active Gata1 sites. The dashed line is y = x. Data in  
d–h are derived from 2 independent experiments for CMPs and MEPs and 1 
experiment for GMPs.
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factors by smFISH (Fig. 1d, Supplementary Fig. 1). Gata1 was high 
in MEPs and low in GMPs, while PU.1 was high in GMPs and low in 
MEPs; Gata2 was highest in CMPs (Fig. 1d, e, Extended Data Fig. 3). 
Notably, in all instances—apart from PU.1 in GMPs and Gata1 in 
MEPs—we found that mRNA count distributions were positively 
skewed, with the majority of the probability mass below 50 copies 
of mRNA per cell. Frequency distributions of this type are typical 
of mRNAs produced in infrequent bursts of transcription29. Con-
sistently, all genes were infrequently ‘ON’, even in high-expressing 
cell types (Fig. 1f ).

Given the infrequency of active sites and the relatively low copy num-
ber of each gene, we next assessed the frequency of co-expression of 
these genes. The majority of CMPs expressed PU.1 (97%), Gata2 (96%) 
and Gata1 (64%) (Extended Data Fig. 3c). Notably, greater than 60% of 
CMPs had at least one mRNA for all three genes, as well as 45% of MEPs 
and 89% of GMPs (Fig. 1g; see Extended Data Fig. 4 and Supplementary 
Discussion 2 for discussion of false positives in smFISH).

We next asked whether CMPs were still actively transcribing PU.1 
and either of the Gata genes, or whether co-transcription of these fac-
tors was precluded at this stage of differentiation. To test this, we used 
the fact that if nascent transcription of PU.1 and Gata1 or Gata2 were 
mutually exclusive, the empirical frequency of CMPs with simultaneous 
transcription sites, fPU 1 Gata1. + + , should be lower than the frequency  
predicted by statistically independent firing, f f×PU 1 Gata1. + + . On the  
contrary, we found that both fPU 1 Gata1. + + and fPU 1 Gata2. + + were essentially 
indistinguishable from those predicted by statistically independent 
bursting (Fig. 1h). Additionally, fGata2 Gata1+ + was approximately 1.5- to 
twofold higher than f f×Gata2 Gata1+ + , consistent with the proposed  
model of Gata gene co-expression during erythropoiesis. These find-
ings indicate that mutually exclusive transcription of the antagonistic 
transcription factors PU.1 and Gata1 or Gata2 does not occur in CMPs.

Stochastic transitions to transcriptional termini
We then performed stochastic simulations using the transcriptional 
parameters inferred from our CMP data to model the transcriptional 
behaviour of each gene over time21,30. To refine our parameter fitting, we 
assigned CMPs to four transcriptional states: a PU.1highGata1/2low state 
(P1H); a Gata1/2highPU.1low state (G1/2H); a Gata2high state (G2H); and a 
state with low expression of all three genes (LES CMPs) (Extended Data 
Fig. 5a, b, Methods). Ordering these states with diffusion pseudotime 
estimation31 (Fig. 2a) identified two branches emanating from the LES 
CMP cluster. Consistent with our previous analysis, although each 
branch in the pseudotime plot had differential transcriptional activity, 
active transcription sites for the ‘opposing’ transcription factor were 
still detected even late in pseudotime along a given branch (Fig. 2b, 
Extended Data Fig. 5c). We then inferred the transcriptional rate param-
eters for each state using the smFISH data (Supplementary Table 4, 
Supplementary Methods 4). Single-cell trajectories simulated using 
parameters for a given state closely approximated the transcriptional 
behaviour of each state (Fig. 2c), and were extremely stable (Fig. 2d). We 
then used these simulations to infer the cumulant number of nascent 
mRNAs produced in each state over a time frame typical of the lifespan 
of CMPs in vitro32. The majority of trajectories transcribed hundreds of 
copies of Gata2 over this time period, irrespective of the transcriptional 
state (Fig. 2e). Simulated LES CMPs and G2H CMPs also transcribed 
between 20 and 100 mRNAs for Gata1 and PU.1, respectively. On aver-
age, LES cells were predicted to contain mRNAs of all three genes after 
just two hours of simulation time, and greater than 99% of cells were ‘tri-
ple positive’ at some point during the 12-h simulation window (Fig. 2f). 
Furthermore, the majority of trajectories were triple positive for over 
half of the simulation timeframe (Fig. 2g).

We then asked if bifurcation into P1H and G1/2H states could occur 
stochastically from the LES state. Indeed, although the parameter set 
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of each state generated stable trajectories that largely maintained 
their initial state assignment, rare transitions to other states did occur 
(Fig. 2d). Therefore, we repeated simulations by first initializing cells 
in the LES state, and through fluctuations alone allowed cells to tran-
sition to other states in which they would then adopt new transcrip-
tional parameters. Of trajectories initialized in the LES state, 9% and 
18% ended up in either the G1/2H or the P1H terminus after one CMP 
lifetime, respectively, whereas 25% of trajectories ended up in the G2H 
state (Fig. 2h). Trajectories ending in the terminal G1/2H and P1H states 
frequently fluctuated in and out of the LES and G2H states (Fig. 2i). 
Moreover, changes in nascent transcription rates were required for 
cells to reach both termini (Extended Data Fig. 5d–f). These analyses 
indicate that, although transcriptional noise drives co-expression of 
antagonistic transcription factors, stochastic and reversible transitions 
of noisy states can still efficiently bifurcate into PU.1high and Gatahigh 
expressing states.

Mapping HSC state correlations by pedigree analysis
Although the above results suggest considerable transcriptional sto-
chasticity in CMPs, whether such phenomena occur in HSCs is a critical 
question. Moreover, the effect such processes have on the transcrip-
tional state dynamics of the PU.1–Gata1 network in HSCs is currently 
debated32–34, and ‘transcriptional priming’ has been suggested as puta-
tively limiting the transcriptional states an HSC and its descendants 
can occupy9,35,36.

We first asked whether HSCs co-expressed PU.1 and the Gata genes. 
HSC and their early progeny showed robust expression of all three 
genes at a similar level to that of CMPs, with greater than 99% of cells 
expressing PU.1 and Gata2 and 55% co-expressing all three mRNAs 
(Extended Data Fig. 6a–c).

Next, to understand how the temporal dynamics of these genes are 
coordinated, we used kin correlation analysis (KCA)—an experimen-
tal approach that uses the information embedded in pedigrees to 
infer the dynamics of transcriptional state transitions37. To that end, 
we followed HSCs for 96 h ex vivo, constructed pedigrees from each 
HSC, and used smFISH to assign transcriptional states to cells (Fig. 3a, 
Extended Data Fig. 7, Supplementary Fig. 2b; see Methods and Sup-
plementary Methods 5 for details of state assignments). In addition 
to the four subpopulations identified in CMPs (Fig. 3b) (LES, G1/2H, 

G2H and P1H), we also detected some cells in a megakaryocytic state 
(Megs) that had hundreds of copies of each of the three mRNAs and 
were polyploid (Extended Data Fig. 7a), as well as rare (0.74%) cells with 
macrophage-like morphology and very high PU.1 levels. We excluded 
these cell populations to focus on more immature HSPCs.

First, we determined whether individual HSCs could generate prog-
eny in multiple states. Twenty-seven out of 117 colonies contained only 
one predominant state type: 5 out of 117 were G1/2H-dominant, 2 out of 
117 were P1H-dominant, and 21 out of 117 were LES-restricted (Extended 
Data Fig. 8a). The frequency of colonies with any combination of 2, 3, or 
4 or more states was around 45%, around 25% and around 3%, respec-
tively. Of mixed colonies, 25% had at least one G1/2H cell and 41% had 
at least one P1H cell. All other colonies were composed of mixtures of 
G2H and LES. To determine which combination of states could derive 
from a single clone, we calculated the frequency of states within mixed 
colonies that were conditional on the presence of a cell in each state 
(Fig. 3c). Although no two states were mutually exclusive in this analy-
sis, the frequency of finding a colony with both G1/2H and P1H states 
was low (3 out of 117). HSC colonies that produced any G1/2H progeny 
showed a tenfold reduction in the frequency of P1H cells, a tenfold 
increase in the frequency of G1/2H cells, and a 1.5-fold increase in G2H 
cells. Similarly, colonies with any endpoint progeny in the G2H state 
had reduced frequencies of cells in the P1H and LES cell states, while 
the frequency of cells in the G1/2H state was increased nearly twofold. 
Conversely, clones producing P1H cells had a threefold reduction in 
G1/2H cells and a fourfold reduction in G2H cells.

Stochastic and reversible HSC transcription dynamics
One scenario that could account for such behaviour is an irreversible 
switch in the transcriptional kinetics that arises early in the pedigree. 
In such a case, cells at close generational distances (for example, sis-
ter cells) would be expected to be in the same transcriptional state. 
However, we found that P1H and G1/2H states were paired with LES and 
G2H states even at recent generational divides, including sister cells 
(lineage distance u = 1) (Fig. 3d). These results indicate that transitions 
to a high-expressing state either occurred irreversibly but late, or were 
infrequent and reversible.

To discriminate between these mutually exclusive hypotheses, we 
used KCA, which uses the correlation between endpoint transcription 
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states and lineage distance between cells in a pedigree to infer the 
transition rates of those states (Fig. 4a). Using the pedigree and smFISH 
data, we first determined a transition matrix across all generational 
distances and across all edges (Fig. 4b, c). The inferred transition rates 
between any two states were relatively low compared with the prob-
ability of retaining the state of the parent cell (Fig. 4b, c), consistent 
with the observation that most cells had not transitioned to the P1H 
or G1/2H state by the endpoint of the experiment. Additionally, we 
noted that some transitions had little to no probability per genera-
tion—for example, direct transitions from P1H to G1/2H or vice versa 
had approximately 0% probability. Moreover, entering the G2H state 
seemed to be a prerequisite for entering G1/2H. The inferred transition 
probabilities were robust to a range of mRNA cutoffs between differ-
ent states, suggesting that these transitions are not artefacts of noise 
across an arbitrary cutoff (Extended Data Fig. 9). Moreover, we found 
no evidence of partitioning asymmetries of mRNAs during division, 
excluding the possibility that such phenomena influenced the inferred 
transition probabilities (Extended Data Fig. 10).

We next used these transition probabilities to model a range of state 
transition behaviours, from a fully irreversible chain of commitment 
(Fig. 4d, model I) to a fully connected network (Fig. 4d, model IV). We 
compared the predictive power of these models by determining the 
error between the three-cell state frequencies predicted by each model 
and those observed in the experiment (Fig. 4e, Methods). At all gen-
erational distances tested, for both the Markov chain (model II) and 
the fully connected model (model IV) there were approximately 100% 
and 30% reductions in the predicted three-cell state frequency error 
when compared with the irreversible (model I) and partially irreversible 

(model III) models, respectively (Fig. 4e). Moreover, the Markov chain 
performed better at lower generational distances v (for example, v = 2). 
Overall, among the models tested, state transition models that con-
tained reversible transitions to the P1H and G1/2H states outperformed 
those with irreversible transitions, and the Markov chain model best 
captured the underlying state transitions (Fig. 4f).

Finally, we aimed to determine the state histories of a cell given its 
current transcriptional state and the state of its clonal relatives. We 
found that the majority of time along any trajectory was spent in the 
LES and G2H states, including those generating a P1H or G1/2H endpoint 
state (Fig. 4g). As such, a Markov chain governed by these parameters 
can lead to priming-like behaviours in clonal descendants of single 
HSCs without necessitating early, irreversible transitions of states or 
noiseless regulation of transcription. Of note, this analysis indicates 
that the current transcriptional state of a cell—as defined by the three 
genes PU.1, Gata1 and Gata2—may not be fully predictive of the past 
or future states visited by the ancestors or descendants of that cell, 
respectively, even though it may bias the probability distribution of 
obtainable states in the short term.

Discussion
How robust cellular phenotypes arise from intrinsically noisy processes 
is a question of central importance to the study of tissue morphogen-
esis and organismal homeostasis. Although ‘playing dice’ with gene 
expression networks may seem counterproductive, such strategies 
could be evolutionarily advantageous for tissue homeostasis (Fig. 4h, 
Supplementary Discussion 3). Indeed, such systems have the advantage 
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of maintaining a temporally stable probability of cells in every available 
transcriptional state (Supplementary Methods 6) without requiring com-
plex regulatory measures to facilitate such behaviour, all of which will 
be similarly subject to molecular noise7 (Supplementary Discussion 3).

Here we have attempted to quantitatively address the question of 
noise in the expression of transcription factor genes in primary HSPCs, 
using single-molecule imaging and the quantitative analysis of pedi-
grees. Our results indicate that antagonistic transcription factors are 
co-expressed in the majority of HSPCs, and that stochastic transitions 
between the transcriptional states defined by these genes are the prob-
able basis of the dynamics of the system (Fig. 4i). As these dynamics 
generate stability by leveraging the physically intrinsic noise of gene 
expression, the conclusions from these studies may reflect a central and 
unifying principle underlying the properties of stem and progenitor cells 
that are central to the evolution of metazoan life. As such, determining 
whether these reported phenomena predominate in other tissue sys-
tems will be critical to developing a quantitative understanding of organ-
ismal homeostasis and, consequently, the pathobiology of diseases 
originating in or influenced by tissue-resident stem-cell compartments.

Online content
Any methods, additional references, Nature Research reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code 
availability are available at https://doi.org/10.1038/s41586-020-2432-4.
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Methods

All reagents used in these studies are listed with catalogue number in 
Supplementary Table 5 and 6.

Animal husbandry
Male and female C57/BL6 mice (6–10 weeks old) were purchased from 
Jackson Laboratories and housed in animal facilities at the Albert Ein-
stein College of Medicine. All experiments were approved by the Insti-
tutional Animal Care and Use Committee of the Albert Einstein College 
of Medicine (2016-1003). All procedures were performed in accordance 
with guidelines from the Institutional Animal Care and Use Committee 
of the Albert Einstein College of Medicine. The number of animals used 
was not specified at the beginning of the study, and randomization and 
blinding were not performed.

Cell lines
HPC-7 cells were passaged in IMDM +5% fetal bovine serum, 1% penicil-
lin/streptomycin, 1% sodium bicarbonate, 74.8 μM monothioglycerol 
and recombinant mouse (rm) SCF (50 ng/ml). The HPC-7 cell line was 
originally provided by O. Abdel-Wahab. Cells were not authenticated 
or tested for mycoplasma.

Primary HSPC cultures
Primary HSPC were isolated by cell sorting on a Moflo Astrios EQ (Beck-
man Coulter). Kit+Lin− (KL) populations (CMPs, MEPs and GMPs) were 
grown on retronectin coated (40 μg/ml) #1.0 glass, 35mm2 MatTek 
dishes in IMDM with 1% penicillin/streptomycin, 10% FBS and sup-
plemented with recombinant mouse (rm) SCF (100 ng/ml), rmTPO 
(100 ng/ml), rmIL-3 (10 ng/ml), rmIL-6 (10 ng/ml), and recombinant 
human (rh) EPO (2 IU/ml) and GM-CSF (10 ng/ml). M-CSF (10 ng/ml) 
and G-CSF (10 ng/ml) was supplemented to GMP cultures. Bulk KL 
cells used in Extended Data Figs. 1 and 2 were grown in suspension in 
a single well of a 24-well plate.

Cells were grown for approximately 12–16 h ex vivo to allow for full 
recovery from sorting before analysis with smFISH. HSCs in Extended 
Data Fig. 6 were grown for 72 h on retronectin coated MatTek dishes, 
as above, in StemSpan SFEM media with 1% penicillin/streptomycin 
and recombinant mouse (rm) SCF (100 ng/ml), mTPO (100 ng/ml), 
rmIL-3 (10 ng/ml), rmIL-6 (10 ng/ml), and rhEPO (2 IU/ml). Cells were 
maintained at 37 °C and 5% CO2.

Onstage culture
For time-lapse imaging, sorted HSCs were seeded on 35 mm2 MatTek 
dishes coated with 10 μg/ml anti-CD43 biotin instead of retronectin 
in order to reduce cell movement and cell loss and/or misidentifica-
tion during the experiment38. Cultures were maintained at 37 °C with 
humidity and 5% CO2/95% premixed air using the Evos FL2 Auto Onstage 
Incubator.

Flow cytometry and cell sorting
Mice (5–10 per experiment) were euthanized by CO2 asphyxiation fol-
lowed by cervical dislocation. Sternum, tibiae, femurs, pelvic bones and 
vertebrae were isolated, pooled, and crushed with a mortar and pestle 
on ice in MACS buffer (PBS, 1% FBS, 1 mM EDTA) and filtered through 
a 70-μm filter. Red blood cells and granulocytes were then removed 
through density centrifugation over a 5 ml Histo-Paque Ficoll Gradi-
ent. After extensive washing of the buffy coat, cells were then lineage-
depleted using 1:1,000 dilution of anti-mouse B220, CD19, CD4, CD8, 
Gr-1, CD11b, Ter119 and CD127, all biotinylated, on ice for 25 min. Cells 
were washed and then stained with triple-washed anti-IgG magnetic 
beads (Untouched Mouse T Cells Kit, Thermo Fisher) on ice for 30 min. 
Cells were washed and then depleted of lineage-positive cells by passing 
through a magnetic separation column (MACS LD Column, Militenyi) 
loaded on a QuadraMACS magnet (Militenyi). Lineage-negative cells 

were then stained for 30 min on ice with anti-CD150, anti-CD34, anti-
KIT, anti-Sca1 and anti-CD48 (all 1:250) and anti-CD16/32 (1:500) with 
Streptavidin Pacific Orange (1:1,000). Cell populations were sorted 
on 4-way purity mode into IMDM, 5% FBS, 1% penicillin/streptomycin. 
See Supplementary Methods for gating strategy.

Poly-l-lysine coating of #1.0 12 mm coverslips
To prepare poly-l-lysine-coated coverslips for immobilization of sus-
pension cells (HPC-7, Kit+Lin− progenitors, and whole bone marrow), 
12 mm #1 Coverslips were first boiled in 0.5 M HCl for 30 min, washed 
extensively in double distilled water and stored in 70% ethanol. Cov-
erslips were then coated for 5 min with 0.01% poly-l-lysine, followed 
by two washes with water and air-dried for 20 min. Coverslips were 
then transferred to a 24-well dish on ice for cell immobilization and 
subsequent smFISH staining. Cell aliquots (20 μl) of around 10,000 
cells per 100 μl were dotted and spread onto the coverslip and the 
cells were allowed to settle on ice for 20 min. Unstuck cells were then 
washed away with two PBS washes before fixation and smFISH staining.

Probe design
To design mRNA-specific targeting probes for sequential smFISH, 
mRNA sequences—including 5′ and 3′UTRs for each gene—were 
imported into Oligo7 software. 30mer targeting sequences were identi-
fied as follows, with a minimum of 10bp between successive probes: 
GC content 50–60%; ΔG (free energy) of duplexes greater than −0.1 kJ/
mol; ΔG of hairpin formation greater than −0.1 kJ/mol.

Putative sequences were then screened for off-target activity using 
Blast (https://blast.ncbi.nlm.nih.gov/Blast.cgi). Selected sequences 
were then concatenated on the 5′ and 3′ end with flanking readout 
20mer sequences, generating a final ‘primary probe’ as a 70mer. Probes 
were then ordered in 100 nmol quantities from Thermo Fisher or IDT. 
Individual probes were resuspended at 100 μM concentration, mixed 
in equal proportions to 10 μM final concentration of each probe, and 
stored at −20 °C. Stock solutions were diluted in Ultrapure water to 
200 ng/μl for working stocks.

For the design of Mpo, Myb and direct PU.1 18–20mer probes, mRNA 
sequences were imported into the Stellaris Probe Designer tool (LGC 
Biosearch) with masking level 5, oligo length 20 and minimum spacing 
of 2nt. Commercial probes were used at 10 nM final concentration.

Sequential smFISH for PU.1, Gata1, Gata2, Cebpa, Runx1, Meis1, 
Zfpm1 and Gypa
Cells were fixed in 3.2% PFA (Electron Microscopy Sciences) and diluted in 
PBS with 1 mM MgCl2 (PBSM) at room temperature for ten minutes. Cells 
were then washed with 2 ml cold PBSM with 10 mM glycine. Cells were 
then permeabilized on ice for 20 min in PBSM with 0.1% Triton X-100 and 
2 mM vanadyl ribonucleoside complex (VRC). After washing with PBSM, 
cells were then incubated at room temperature with prehybridization-30 
buffer (prehyb-30; 30% formamide, 2X SSC). Cells were then stained 
overnight at 37 °C with hybridization buffer consisting of 10% dextran 
sulfate, 30% formamide, 2X SSC, 2 mM VRC, 10 μg/ml sheared ssDNA from 
salmon sperm, 10 μg/ml E. coli tRNA, 10 μg/ml molecular grade bovine 
serum albumin, and 200 ng each of 70mer primary probe mixes. Cells 
were then washed twice for 20 min at 37 °C with prehyb-30, and once with 
2X SSC. Cells were then post fixed in 1% PFA in PBSM for 5 min, followed 
by two washes in 2X SSC. Primary stained cells were then washed with 
prehyb-10 (10% formamide, 2X SSC) for 10 min at 37 °C and stained with 
10% dextran sulfate, 10% formamide, 2X SSC, 2 mM VRC, 10 μg/ml sheared 
ssDNA from salmon sperm, 10 μg/ml E. coli tRNA, 10 μg/ml molecular 
grade bovine serum albumin, and 10 ng each of 20mer readout probes 
for each gene for 3 h at 37 °C. Reactions were then washed twice for 10 
min in prehyb-10, followed by a final wash in 2X SSC. Cells were then 
mounted in Prolong Diamond Antifade reagent plus DAPI. For cells grown 
on MatTek dishes, the mounting was performed by laying a 12 mm #1.0 
coverslip onto the central glass well of the dish; for cells immobilized 

https://blast.ncbi.nlm.nih.gov/Blast.cgi
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on a coverslip, the coverslip was first blotted on filter paper to remove 
excess moisture and then inverted onto a drop of Antifade on a glass 
slide. See Supplementary Table 1 for probe sequences.

Probe labelling with Cy3, Cy5 and Alexa Fluor 594
Secondary ‘readout’ probes were purchased from Thermo Fisher with 5′ 
C5 amine and 3′ C7 amine modifications. Five micrograms of each readout 
probe was then coupled to the appropriate fluorescent dye according to 
the manufacturer’s specifications. After labelling, probes were extracted 
from excess dye by use of a Qiagen Nucleotide Removal Kit, resuspended 
in Ultrapure water, and stored at −20 °C. Labelling efficiency was deter-
mined using Beer’s law. Only fluorescently labelled probes with more than 
1.5 dyes per oligonucleotide were used in these studies.

smFISH imaging
Images were acquired using oil immersion 100× objective on an epi-
fluorescence Olympus BX83 microscope, with an X-Cite 120 PC lamp 
(EXFO) and an ORCA-R2 digital charge-coupled device (CCD) camera 
(Hamamatsu) using Cy5 (Cy5-4040C-Zero), Cy3.5 (Cy3.5v1), Cy3 (Cy3-
4040C-Zero), and DAPI (DAPI-5060C-Zero) filters (all from Semrock 
except Cy3.5, from Chroma). Exposure times were 600 ms, 600 ms, 
400 ms and 10 ms, respectively. Z stacks spanning the entire volume 
of the cells were acquired by imaging every 300 nm along the z-axis. 
Stage and illumination control of the microscope was achieved using 
MetaMorph software (Molecular Devices).

Time-lapse microscopy
HSC cultures were maintained as described above using the EVOS 
Onstage Incubator System on an EVOS FL2 microscope (Thermo Fisher 
Scientific). Cells were imaged with a 10X objective with phase imaging 
every 10 min, or were imaged with phase imaging using a 4X objective 
every 5 min.

Quantification and statistical analysis
All statistical analyses and calculations were made in MATLAB R2018a 
or MATLAB 2018b except where otherwise noted. All computations 
were performed on a custom-built PC from AVA with an Intel CORE 
i7-8700 CPU @3.20 GHz and 32 GB RAM.

Image analysis for smFISH
Detection of single mRNAs was performed by three-dimensional Gauss-
ian fitting of thresholded spots using FISHQUANT (FQ) implemented 
in MATLAB R2018b. Details on use of FISHQUANT are provided in Sup-
plementary Methods.

Probabilistic transcriptional state assignments
See Supplementary Methods.

Comparison of scRNA-seq and smFISH
See Supplementary Methods.

Summary statistics of mRNA copy number per cell
Extended Data Fig. 3c provides summary statistics for the mRNA counts 
per cell for PU.1, Gata1 and Gata2 in primary KL populations. n indicates 
the total number of cells analysed across two separate experiments 
(CMPs and MEPs) or in a single experiment (GMPs). μ is the arithmetic 
mean of the number of mRNA molecules per cell, 95% CI is the 95th 
confidence interval and ‘%Expressing’ is the number of cells with at 
least 1 detected molecule(s) of mRNA for each gene. All calculations 
were performed in MATLAB.

Theoretical co-bursting frequencies
Theoretical co-bursting frequencies were calculated by multiplying the 
probability of a cell having p number of transcription sites for gene 1 
by the probability of having q number of transcription sites for gene 2.

t-Stochastic neighbour embedding maps
t-Stochastic neighbour embedding (tSNE) maps of primary KL cells 
were generated in MATLAB with the ‘tsne’ function using the mature 
and nascent mRNA values per cell for each gene as variables.

Transcriptional state assignments: KL
The gating strategy is shown in Extended Data Fig. 5. From all CMPs, 
large, polyploid megakaryoblasts with hundreds of copies of all three 
genes are first removed. Next, all cells with Gata1 >10 are classified as 
G1/2H (red box, top left histogram). The negative fraction (grey box, top 
left histogram) is then broken up using PU.1 and Gata2. Given the lack 
of cleanly separated PU1 and Gata2 subpopulations in their respective 
histograms (top middle and right histograms), the bivariate distribu-
tion was used to identify states. P1H (blue box) are identified as PU.1 > 40 
and Gata2 < 50. G2H (pink box) is identified as Gata2 > 25, PU.1 < 40. A 
small population of Gata2highPU.1high CMPs (yellow box) were difficult to 
assign. To assess if these were cells destined towards the G1/2H lineage, 
we compared the inferred transcriptional parameters of the G2H state 
if we included or excluded these cells from the G2H state. We found 
only minor changes in transcriptional parameters, with a decrease in 
kon (the rate of gene activation) and kini (the rate of RNA polymerase II 
escape from the paused state) for PU.1, and an increase in the koff (the 
rate of gene inactivation) and kini for Gata1 (Supplementary Table 4). 
However, we also noted that some subset of GMP were Gata2highPU.1high. 
As such, we excluded these cells from all downstream analyses.

Diffusion pseudotime estimation
Diffusion maps based on the mature mRNA counts per CMP cell for 
PU.1, Gata1 and Gata2 were generated in MATLAB using the diffusion 
pseudotime estimation software described in ref. 31. The diffusion pseu-
dotime maps were generated using a 40-nearest neighbour search 
with a kernel width of 50. The diffusion map plotted in Fig. 2a shows 
the first two diffusion components and is coloured according to the 
transcription state classification scheme described in Extended Data 
Fig. 5. For the raster spike density plots in Fig. 2b, CMP state subsets 
were ordered along their inferred pseudotime. For the Gata branch, 
we subsetted on cells in the LES, G2H and G1/2H states. For the PU.1 
branch, we subsetted on cells in the LES and P1H states. Each spike is 
a cell and the height of the spike is the number of active transcription 
sites in that cell.

Phase portrait diagrams
Phase portraits are based on similar analyses39, with the nascent mRNA 
per cell for a gene given on the y axis and the mature mRNA for a gene 
given on the x axis. More than 240 cells were analysed for each gene 
pair with PU.1. Nascent mRNAs are the equivalent number of mature 
mRNAs found at all active transcription sites for a gene as determined 
by the integrated intensity of those transcription sites.

Mathematical model of three-gene random telegraph process
All scripts required to run the following model and associated simula-
tions are provided as .m files. Mathematical details on the methods for 
these sections are found in Supplementary Methods.

Pedigree analysis and kin correlation analysis
Time-lapse movie analysis and mapping to smFISH data. Given the 
large surface area of the MatTek dish and the need to use two separate 
microscopes for time-lapse and smFISH imaging, correctly mapping 
colonies between these systems is exceedingly nontrivial and labour 
intensive. Imaging the entire surface of the dish for smFISH requires 
around 500 stage positions with a 100X objective, which is prohibi-
tively long for four-colour acquisition over multiple experiments. As 
such, we instead realized that the spatial distribution of large mega-
karyocytes generated during HSC culture creates a reference map 



between colonies. These markers can therefore serve as guides during 
identification of colonies during smFISH imaging acquisition. As such, 
we used the final frame of the movie to identify regions of the dish in 
which we could confidently identify colonies on the epifluorescent 
microscope and imaged these colonies for smFISH. We then manu-
ally analysed the time lapse movies for these select colonies in TTT40. 
Single-cell identification within each colony was then performed by 
manually cross-referencing between the smFISH stacks and the final 
frame of the movie.

State assignments for HSC. State assignments follow the sequential 
gating strategy shown in Extended Data Fig. 7, where megakaryocytes 
are first identified and excluded and then G1/2H cells are identified as 
cells with more than 10 copies of Gata1 per cell. P1H macrophage cells 
are all cells with more than 150 copies of PU.1 per cell and were similarly 
excluded from downstream analysis. Of the remaining population, 
there is no clear threshold that is able to separate G2H cells from P1H 
or LES (Extended Data Fig. 7b, c, right). As such, we fit both genes to a 
two-component negative binomial distribution. For the data in Fig. 3, 
cells were called G2H or P1H rather than LES if they had a probability of 
assignment to the high-expressing state of Gata2 or PU.1, respectively, 
of greater than 80%. For the transition dynamics shown in Fig. 4, we used 
a hard threshold of 75 copies of PU.1 and used probabilistic assignment 
for Gata2, similar to the treatment of Esrrb expression in ref. 37. An ex-
tensive description of this procedure is provided in the Supplementary 
Methods. This procedure allows for the correction of erroneously as-
signing a cell in a low Gata2 state to the high state or vice versa due to 
the overlap in the negative binomial components.

KCA. A derivation of KCA can be found in ref. 37. Scripts to perform KCA 
and consistency checks were adapted from scripts provided by S. Hor-
moz and M. Elowitz and are provided in the Supplementary Information 
along with the raw data for all colonies analysed.

In brief, KCA was performed using all colonies analysed across 2 
separate experiments for a total of 117 colonies under the assumptions 
of a stationary, reversible transition matrix between states. Transition 
probabilities (reported as probability/generation in all figure panels) 
were inferred at lineage distances of u = 1 (sister cells) to u = 6 (distant 
cousin cells). The data in Fig. 4b, c are average inferred transition prob-
abilities for each lineage distance u, and the error bars are the standard 
error of the mean in those estimates derived by bootstrapping through 
the data 5,000 times. The script entitled “KCA.m” will generate all the 
figures found here, and will also save the mean and standard deviation 
of the inferred transition probabilities between states.

Checking robustness of mRNA cutoff threshold. We used the ap-
proach formulated in ref. 37, whereby we re-ran the KCA analysis using 
different cutoff values for Gata1 and PU.1 and then compared these 
resultant transition matrices to the reference matrix reported in this 
study (Extended Data Fig. 9).

Checking for spurious state transitions due to partitioning errors. 
To check our data for spurious transitions inferred during KCA due to 
asymmetric partitioning of mRNAs, we used two approaches (Extended 
Data Fig. 10). First, we looked for evidence of such phenomena in our 
CMP and HSC datasets reported in Fig. 1 and Extended Data Fig. 6. We 
searched those image banks for sister cells in anaphase–telophase at 
the time of fixation, separated those cells on the midline, and calculated 
the correlation coefficient for the mRNA counts for each gene in each 
population. This analysis revealed very high correlation in the number 
of mRNAs partitioning to each sister cell.

Second, we used the movies used in the KCA to analyse the correla-
tion in mRNAs between cells having divided within the last hour before 
fixation at the endpoint. That analysis also revealed considerably high 
correlation in mRNA values.

Together, these results indicate that our results are probably not 
substantially affected by partitioning asymmetries of mRNAs during 
mitosis.

Comparing reversible and irreversible dynamics. To test whether our 
data were better described by dynamical models containing irreversible 
transitions (models I and III) compared with those without (models II and 
IV), we used an approach described in ref. 37. First, to generate transition 
matrices for each model, we took the transition matrix derived above 
(which is model IV) and imposed a new model’s dynamics by setting 
disallowed edges to 0 and re-normalizing each column of the matrix 
such that all the transition probabilities leaving a state summed to 1.

We then calculated the expected three-state frequencies for u = 1 and v 
(the generational distance of the more distant relative) = 2:4 under each 
model. We then compared these three state frequencies with the corre-
sponding frequencies for the same values of u and v as derived from the 
experiment. The data in Fig. 4e (middle) are the average predicted (x axis) 
and observed (y axis) three-point frequencies. The error bars are for the 
observed frequencies and derive from bootstrapping through the data 
1,000 times. We then calculated the error between the model and observed 
results as defined by the mean absolute error for all three-point frequen-
cies at a given distance v. The script entitled “ThreePtFreqs.m” found in 
the associated GitHub page will generate the full analysis reported here.

Calculating time spent in each state. We wrote an algorithm, tree-
BackTrace, which takes in the structure of a tree together with the final 
distribution of states among the leaves of this tree, as well as the Markov 
matrix modelling state transitions between successive generations, and 
calculates for each leaf node the expected time (measured in number 
of generations) it spent in each state along its full ancestral trajectory, 
given the information of the final distribution of states.

To arrive at the conditional expectation, for each possible assign-
ment of states to the intermediate nodes of the tree, one can calculate 
its probability by multiplying together the resulting transition prob-
abilities indicated by the Markov matrix. For each such assignment 
and for each leaf node, one can count the distribution of states in its 
trajectory, and by summing over all such assignments, weighted by 
their probabilities, and then dividing by the total probability of all such 
assignments, calculate the conditional expectation mentioned above.

However, such an exhaustive calculation is exponential in time. 
Instead, we used a divide-and-conquer approach, by breaking up the 
tree into two subtrees and combining the information from these 
subtrees, resulting in a linear-time algorithm (see script in Supple-
mentary Data 2).

Calculating the steady state population frequencies. See Supple-
mentary Methods.

Figure generation, plotting and graphics
All figures were generated in MATLAB using either custom written scripts 
or, for the violin plots in Fig. 1e, the gramm package. Exported .emf or 
.jpg files were then imported into Adobe Illustrator for cosmetic adjust-
ments such as normalizing the font size across figure panels and adding 
relevant graphics where needed. Fiji was used to generate jpeg images 
of all smFISH image stacks. For all images except Extended Data Fig. 4a, 
we show the filtered image generated during processing in FISHQUANT.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
All source data used to generate figures are available within the 
manuscript files or at the GitHub repository (https://github.com/

https://github.com/justincwheat/Single-Molecule-Imaging-of-Transcription-Dynamics-in-Somatic-Stem-Cells


Article
justincwheat/Single-Molecule-Imaging-of-Transcription-Dynamics-
in-Somatic-Stem-Cells) associated with this manuscript. Further infor-
mation and reasonable requests for resources, reagents and data should 
be directed to the corresponding author. For data used for generating 
figures related to kin correlation analysis or simulations (Figs. 2, 4, 
Extended Data Figs. 8 and 9), separate .mat files have been provided 
as Supplementary Data 1 and also uploaded to the GitHub repository 
listed above or are generated upon running the associated scripts. All 
data are available from the corresponding author upon reasonable 
request. Source data are provided with this paper.

Code availability
Software written for parameter estimation and stochastic simulations 
are provided in Supplementary Data 2, (FSP.m, getKLD.m, GSSA.m). 
Software relevant for Figs. 3 and 4 can also be found in Supplemen-
tary Data 2: the code for KCA (KCA.m), generating 3-cell frequency 
matrices (ThreePtFreqs.m), testing different molecular cutoffs 
(KCA_thresholdtesting.mlx), and calculating time spent in each state 
(GenerateAllTrees.m). Data structures for each colony are also provided 
(Colony[#].mat). All scripts and data files have also been published in 
a publicly available repository at https://github.com/justincwheat/
Single-Molecule-Imaging-of-Transcription-Dynamics-in-Somatic-
Stem-Cells. All software generated by other groups used in this study 
are listed in Supplementary Table 7.
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Extended Data Fig. 1 | Transcriptional dynamics of genes conditional on 
PU.1 state. a, b, Cumulative distribution function (CDF) of spot intensity (a) 
and histogram of signal-to-noise ratio (SNR) of spot intensity to local 
background intensity (b) are shown for all spots that passed intensity and 3D 
point-spread function (PSF) fit thresholding in FISH-QUANT. c, Probability 
densities for fluorescence (corresponding to mRNA molecules) in HPC-7 cells 
for Cy3-, Alexa Fluor 594- and Cy5-labelled readout probes. Insets are XY and XZ 
average PSFs for each fluorophore. The overlaid line is the fit to a Gaussian 
distribution. More than 10,000 spots were obtained per fluorophore.  
d, Representative images three-colour smFISH for PU.1 (Cy5, red), Gata2 (Cy3, 
white) and Gata1 (AF594, green) in HPC-7 cells. Scale bar, 5 μm. e, Bivariate 
distributions of Gata1 and Gata2 (left), Gata2 and PU.1 (middle) and PU.1 and 
Gata1 (right) in two independent experiments (n > 400 cells per experiment) 

with HPC-7 cells. f, Representative images of multiplexed smFISH between PU.1 
and eight other haematopoietic genes in Kit+Lin− bone marrow from wild-type 
mice (n = 258–2,488 cells for each gene, derived from a single experiment; scale 
bar, 5 μm). g, Probability distribution for PU.1 mRNA per cell in KL cells from 
bone marrow from wild-type mice. Overlaid are the high (red) and low (blue) 
components of the two-component negative binomial distribution fitted to 
the data. h, Comparison of PU.1 bursting kinetics between high and low states. 
Left, representative images from smFISH for PU.1 with a single, large 
transcription site in the nucleus. Middle, frequency of cells with the indicated 
number of active PU.1 transcription sites. Right, frequency distribution of 
summed nascent mRNA per cell in each PU.1 state. i, Schematic demonstrating 
a hypothetical transcriptional phase portrait. j, Phase portraits for each gene 
based on the PU.1 state of the cell.
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Extended Data Fig. 2 | Comparative analysis of smFISH and scRNA-seq.  
a, CDF plots of mRNA per cell for five scRNA-seq datasets and smFISH. Data are 
normalized to the maximum count for each gene in each dataset. b, Calculated 
Gini index for seven transcription factor mRNAs in each scRNA-seq dataset 
(white through to black) and smFISH (red). c, CDF plots of Gini indices for all 
five scRNA-seq datasets (See Supplementary Table 2 for gene list). d, Schematic 
of hierarchical clustering followed by random forest classification to identify 
important variables for cluster assignment. e, Variable importance plotted 

against Gini index for four scRNA-seq datasets. The bottom and right panels 
show marginal distributions of Gini index and variable importance, 
respectively. f, Plot of average mutual information (top) or average absolute 
value of the Pearson’s correlation coefficient (bottom) versus normalized 
abundance of n = 200 randomly selected genes against all other genes in the 
dataset. The r values listed are the correlation coefficients. See Supplementary 
Discussion for further details on the analyses performed.
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Table 1:  Statistics for Primary KL Populations

µ (95% CI) range %Expressing µ (95% CI) range %Expressing µ (95% CI)range %Expressing
PU.1 21 (20-22) 0-250 97% 91 (87-95) 0-270 97% 3 (2-4) 0-67 68%
Gata1 8 (7-9) 0-155 64% 3 (2-3) 0-21 90% 52 (51-54)0-153 99%
Gata2 42 (40-44) 0-430 96% 18 (13-22) 0-361 99% 4 (3-5) 0-138 68%

CMP (N=3174) GMP (N=364) MEP (N=1113)
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Extended Data Fig. 3 | Summary statistics of mRNA copy number for 
primary KL. a, Representative images of CMPs, GMPs and MEPs stained by 
smFISH for PU.1, Gata1 and Gata2. Scale bars, 5 μm. Arrows point to CMPs co-
expressing all three mRNAs. b, Boxplots of mRNA count per cell, overlaid with 

single-cell mRNA values (dots). The pink box is the 95% confidence interval, the 
red line is the mean expression, the grey box is ±s.e.m. c, Table of summary 
statistics for each gene. Data for a–c are derived from two experiments (CMPs 
and MEPs) or a single experiment (GMPs). The sample size is listed in c.



Article

-0.5 0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

0 1 2 3
0

0.2

0.4

0.6

0.8

1

PU.1
Average PSF 

(XY)
Average PSF 

(XZ)

Gata1
Average PSF 

(XY)
Average PSF 

(XZ)

400

480 480

400 -5

5
0

Emp. Spot 
XY

Theor. Spot 
XY Residuals

Average PSF 
(XZ)

Average PSF 
(XY)

Gata2

Raw Gata2 Filtered Gata2

2

2

8
6
4

00

1

N
or

m
 I 

(A
U

)

N
or

m
 I 

(A
U

)

1.0

0.5

0

1.0

0.5

0

1.0

0.5

0

1.0

0.5
0

1.0

0.5

0

0

20

200 400

0 200 400

0 200 400

0 1000

Squared Residuals

Sigma X (nm)

Sigma Y (nm)

Sigma Z (nm)

Filtered Intensity

Pr
ob

ab
ilit

y
Pr

ob
ab

ilit
y

Pr
ob

ab
ilit

y
Pr

ob
ab

ilit
y

Pr
ob

ab
ilit

y

Gata2

2000

4 6 8 10

1.0

0.5

0

1.0

0.5

0

1.0

0.5

0

1.0

0.5
0

1.0

0.5

0

0

10

200 400

0 200 400

0 200 400

0 1000

Squared Residuals

Sigma X (nm)

Sigma Y (nm)

Sigma Z (nm)

Filtered Intensity

PU.1

2000

2 3 4 5

1.0

0.5

0

1.0

0.5

0

1.0

0.5

0

1.0

0.5
0

1.0

0.5

0

0

0

100 20015050

0 200 400

0 200 400

0 1000

Squared Residuals

Sigma X (nm)

Sigma Y (nm)

Sigma Z (nm)

Filtered Intensity

Gata1

2000

5 10 15 x103

1 mRNA/cell
1-5 mRNA/cell
>5 mRNA/cell

Discarded Spots

x104x104

a b

c d e

f
400 400

480480

-8

6

0

Residuals
Theor. Spot 

XZ
Emp. Spot 

XZ

1.0

0.8

0.6
0.4

0.2 0.2

0.4

0 01 12 2 3
Gata1 mRNA/T cell PU.1 mRNA/T cell

Fr
eq

ue
nc

y

g PU.1/Gata1/Gata2 Expression in CD4/CD8 Double 
Positive Thymocytes

0

0.6

0.8
1.0

Extended Data Fig. 4 | Spot detection in FISH-QUANT and spot calling in T 
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each gene in each transcriptional state. The x axis is the number of active 
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time-dependent behaviour of simulated cells in a noise only (grey) or state 
transition system (red) shown as a bivariate plot of Gata1 + Gata2 copy number 
against PU.1 copy number. T indicates the elapsed simulation time as a fraction 
of the final time. e, f, Gillespie simulations of state transitions, modulating half-
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reached in the simulations (n = 10,000) (e) and 1,000 representative simulation 
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Extended Data Fig. 6 | Seventy-two-hour progeny of HSCs. a, Representative 
images of HSC progeny. PU.1, red; Gata2, cyan; Gata1, yellow. Transcription 
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the arrowhead marks a megakaryocyte. Representative images from two 
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of cells with  greater than or equal to 1 mRNA per cell is indicated. Two separate 
experiments, with n values indicated on the graphs. c, Bivariate distributions of 
PU.1 versus Gata1 (left) and PU.1 versus Gata2 (right).
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datasets, which also were Gata2highPU.1high (see Extended Data Fig. 3). As such, 
all cells for which PU.1 > 75 and < 150 were assigned to P1H. d, Probability 
distribution for Gata2 in the remaining cells, fit with a two-component 
negative binomial. e, A distribution such as that in d cannot be definitively 
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therefore, cells are assigned probabilistically during KCA to the G2H or LES 
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assignment. See Supplementary Discussion for more details on the rationale 
and implementation of probabilistic gating.
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Extended Data Fig. 8 | HSC colony data. a, Endpoint cells are the leaves on 
each pedigree. Note that edge lengths are not scaled on time between 
divisions, and all endpoint cells are 96 h from the start of the experiment. Cells 
are colour-coded according to the colour scheme used throughout the 
manuscript. Megakaryocytes are labelled in orange. Nodes (cells) observed 
upstream of the endpoint (that is, no transcriptional data are available) are 
coloured black. b, Histogram of number of progeny from a single HSC. c–e, 

Proliferation phenotypes of cells based on endpoint state identity (P1H, n = 137; 
LES, n = 1,571; G1/2H, n = 81; G2H, n = 166). Cell lifetimes in e are the time interval 
between cell birth (last division) and the next cell division or cell death. Violin 
plots are normalized to area, with the centre box-and-whisker plots showing 
the mean (line), standard deviation (box) and 95% confidence interval 
(whiskers). In e, single dots represent outliers in the 99th percentile.
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Extended Data Fig. 9 | Robustness of inferred transition matrix to mRNA 
threshold. a, Normalized deviation in the inferred transition matrices for each 
indicated threshold (n = 200 bootstrapping iterations) of Gata1 mRNA per cell 
relative to the reference matrix reported in this manuscript (cutoff = 10 mRNA 
per cell). The reference matrix is boxed. For any given transition (that is, matrix 
entry), the initial states are the columns, final states are rows. The colour code 
is the same as is used elsewhere in the manuscript. b, As in a for PU.1 (cutoff in 
manuscript = 75 mRNA per cell). c, Frobenius distance T T∑ ( − )ij i j i j, ref , test

2  

between each matrix versus the reference transition matrix. The solid black 
line indicates the background Frobenius distance derived from statistical 
uncertainty in the reference transition matrix, derived by bootstrapping 
through the analysis n = 1,000 times and picking random transition rates from a 
Gaussian distribution defined by inferred mean and standard deviation of the 
transition matrix. Frobenius distance values above this line significantly differ 
from the matrix reported in the manuscript.
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Data collection Data of flow cytometry was collected with FACSDiva 8 or Summit v62 for the FACS experiments on BD FACSAria II system or MoFlo 
Astrios EQ system, respectively. 
 
Microscope controlled with Metamorph (Molecular Devices, Inc.)

Data analysis 1. Spot calling in smFISH datasets: FISHQuant, version 3 (Mueller et al, 2012).  
2. Kin Correlation Analysis  (Hormoz et al, 2016). 
3. Calculation of Entropy: Entropy Package (Hausser and Strimmer, 2009) 
4. Variable Importance in Random Forest Classifier: varSelRF (Diaz-Uriarte and de Andres, 2006). 
5. Clustering of scrSeq: DynamicTreeCut (Langfelder and Zhang, 2016) 
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Sample size Given our experience in pilot experiments whereby we discovered that PU.1 and Gata1 were infrequently bursting in CMP (~10-20% of cells 
with an active site), we therefore decided to image at least 2500 cells in order to observe at least 250 transcription sites for transcriptional 
parameter fitting. For KCA, we relied on prior related work that analyzed similar numbers of colonies (Hoppe et al, Nature 2016). 

Data exclusions For smFISH analysis, all cells with nuclei that were clearly blebbed and apoptotic were excluded from all smFISH analysis. Also, cells were 
excluded if we could not identify clear borders between neighboring cells.  
For the time lapse microscopy experiments, only colonies which could be mapped successfully between the smFISH images and the movie 
were included in the analysis of transcriptional states. Megakaryocytes, as defined by nuclear size and DAPI intensity >3x mean of data set or 
cells which underwent endomitosis during time lapse microscopy, were also removed as they cannot by definition by analyzed with KCA.  

Replication The data used in Figures 3,5, and 6 were repeated twice. For the comparisons with scrSeq, we performed a single experiment analyzing >200 
cells per smFISH reaction. 

Randomization Randomization is not relevant to this study as it is an observational study of transcript counts in primary HSPC

Blinding Blinding is not possible in this study owing to the nature of the experimental studies but was deemed unnecessary in this observational study.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Clinical data

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies
Antibodies used Anti-Mouse CKIT (clone 2B8) APC (1:250) Biolegend Cat# 105811 

Anti-mouse Sca1 (clone D7) APC Cy7 (1:250)  Biolgened Cat# 108126 
Anti-Mouse CD34 (clone RAM34) FITC (1:100) eBioscience Cat# 553733 
Anti-mouse CD150 (clone TC15-12F12.2) (1:250) PE Biolegend Cat# 115904 
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Anti-Mouse CD16/32 (clone 93) PE-Cy7 (1:500) Biolegend Cat# 101318 
Anti-Mouse CD48 (clone HM48-1) BV421 (1:250) Biolegend Cat# 103428 
Anti-Mouse B220 (clone RA3-6B2) Biotin (1:1000) Biolegend Cat# 103204 
Anti-Mouse Gr1 (clone RB6-8C5) Biotin (1:1000) Biolegend Cat# 108404 
Anti-Mouse CD11b (clone M1/70)  Biotin (1:1000) Biolegend Cat# 101204 
Anti-Mouse Ter119 (clone Ter119) Biotin (1:1000) Biolegend Cat# 116204 
Anti-Mouse CD127 (clone A7R34) Biotin (1:1000) Biolegend Cat# 135006 
Anti-Mouse CD19 (clone 6D5) Biotin (1:1000) Biolegend Cat# 115504 
Anti-Mouse CD3 (clone 17A2) Biotin (1:1000) Biolegend Cat# 100244 
Anti-Mouse CD4 (clone RM4-5) Biotin (1:1000) Biolegend Cat# 100508 
Anti-Mouse CD8 (clone 53-6.7) Biotin (1:1000) Biolegend Cat# 100704 
Streptavidin Pacific Orange (1:1000) Thermo Cat# S32365 
Anti-Mouse CD43 (eBioR2/60)  Biotin (10ug/mL) Thermo Cat# 13-0431-82 

Validation Standard FACS antibodies obtained from widely used commercial providers were used in this study. All antibodies were validated 
through positive and negative controls, as well as isotype control antibodies.

Eukaryotic cell lines
Policy information about cell lines

Cell line source(s) HPC-7 cells were obtained from Dr. Omar Abdel-Wahab.

Authentication No authentication was performed.

Mycoplasma contamination Cell lines were not tested for mycoplasma.

Commonly misidentified lines
(See ICLAC register)

No commonly misidentified cell lines were used in this study. 

Animals and other organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals 6-10 week old mus musculus, C57/Bl6, both male and female. 

Wild animals This study does not involve wild animals

Field-collected samples This study does not involve field collected samples. 

Ethics oversight All experiments were approved by the Institutional Animal Care and Use Committee of the Albert Einstein College of Medicine 
Institute (2016-1003). All procedures were performed in accordance with guidelines from the Institutional Animal Care and Use 
Committee of the Albert Einstein College of Medicine Institute (2016-1003).

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Flow Cytometry
Plots

Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation Bone marrow was obtained by crushing femurs, tibiae, pelvis, and vertebrae with a mortar and pestle in MACS buffer (PBS, 1%
FBS, 1mM EDTA). Samples were then filtered and subjected to density centrifugation to remove granulocytes and erythrocytes 
on Ficoll. After removing the buffy coat, samples were rinsed twice prior to staining with FACS antibody cocktails on ice and 
protected from light. 

Instrument BD FACSAria II system or MoFlo Astrios EQ system

Software FACSDiva 8 or Summit v62

Cell population abundance Population purity was checked by a post sort analysis to ensure >98% target population. 
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Gating strategy Gating strategy is shown in Supplemental Figure 1 and detailed in the text

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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